Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.

Identifieur interne : 002186 ( Main/Exploration ); précédent : 002185; suivant : 002187

Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.

Auteurs : Juan Liu [Canada] ; María A. Equiza ; Alfonso Navarro-Rodenas ; Seong H. Lee ; Janusz J. Zwiazek

Source :

RBID : pubmed:24957702

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Changes in root and leaf hydraulic properties and stimulation of transpiration rates that were initially triggered by defoliation were accompanied by corresponding changes in leaf and root aquaporin expression. Aspen (Populus tremuloides) seedlings were subjected to defoliation treatments by removing 50, 75 % or all of the leaves. Root hydraulic conductivity (Lpr) was sharply reduced in plants defoliated for 1 day and 1 week. The decrease in L pr could not be prevented by stem girdling and it was accompanied in one-day-defoliated plants by a large decrease in the root expression of PIP1,2 aquaporin and an over twofold decrease in hydraulic conductivity of root cortical cells (L pc). Contrary to L pr and L pc, 50 and 75 % defoliation treatments profoundly increased leaf lamina conductance (K lam) after 1 day and this increase was similar in magnitude for both defoliation treatments. Transpiration rates (E) rapidly declined after the removal of 75 % of leaves. However, E increased by over twofold in defoliated plants after 1 day and the increases in E and K lam were accompanied by five- and tenfold increases in the leaf expression of PIP2;4 in 50 and 75 % defoliation treatments, respectively. Defoliation treatments also stimulated net photosynthesis after 1 day and 3 weeks, although the increase was not as high as E. Leaf water potentials remained relatively stable following defoliation with the exception of a small decrease 1 day after defoliation which suggests that root water transport did not initially keep pace with the increased transpirational water loss. The results demonstrate the importance of root and leaf hydraulic properties in plant responses to defoliation and point to the involvement of PIP aquaporins in the early events following the loss of leaves.


DOI: 10.1007/s00425-014-2106-2
PubMed: 24957702


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.</title>
<author>
<name sortKey="Liu, Juan" sort="Liu, Juan" uniqKey="Liu J" first="Juan" last="Liu">Juan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Equiza, Maria A" sort="Equiza, Maria A" uniqKey="Equiza M" first="María A" last="Equiza">María A. Equiza</name>
</author>
<author>
<name sortKey="Navarro Rodenas, Alfonso" sort="Navarro Rodenas, Alfonso" uniqKey="Navarro Rodenas A" first="Alfonso" last="Navarro-Rodenas">Alfonso Navarro-Rodenas</name>
</author>
<author>
<name sortKey="Lee, Seong H" sort="Lee, Seong H" uniqKey="Lee S" first="Seong H" last="Lee">Seong H. Lee</name>
</author>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24957702</idno>
<idno type="pmid">24957702</idno>
<idno type="doi">10.1007/s00425-014-2106-2</idno>
<idno type="wicri:Area/Main/Corpus">002112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002112</idno>
<idno type="wicri:Area/Main/Curation">002112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002112</idno>
<idno type="wicri:Area/Main/Exploration">002112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.</title>
<author>
<name sortKey="Liu, Juan" sort="Liu, Juan" uniqKey="Liu J" first="Juan" last="Liu">Juan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB, T6G 2E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB, T6G 2E3</wicri:regionArea>
<wicri:noRegion>T6G 2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Equiza, Maria A" sort="Equiza, Maria A" uniqKey="Equiza M" first="María A" last="Equiza">María A. Equiza</name>
</author>
<author>
<name sortKey="Navarro Rodenas, Alfonso" sort="Navarro Rodenas, Alfonso" uniqKey="Navarro Rodenas A" first="Alfonso" last="Navarro-Rodenas">Alfonso Navarro-Rodenas</name>
</author>
<author>
<name sortKey="Lee, Seong H" sort="Lee, Seong H" uniqKey="Lee S" first="Seong H" last="Lee">Seong H. Lee</name>
</author>
<author>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Populus (physiology)</term>
<term>Seedlings (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aquaporines (métabolisme)</term>
<term>Eau (physiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Plant (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Transpiration des plantes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaporins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aquaporines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Plant</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Seedlings</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Changes in root and leaf hydraulic properties and stimulation of transpiration rates that were initially triggered by defoliation were accompanied by corresponding changes in leaf and root aquaporin expression. Aspen (Populus tremuloides) seedlings were subjected to defoliation treatments by removing 50, 75 % or all of the leaves. Root hydraulic conductivity (Lpr) was sharply reduced in plants defoliated for 1 day and 1 week. The decrease in L pr could not be prevented by stem girdling and it was accompanied in one-day-defoliated plants by a large decrease in the root expression of PIP1,2 aquaporin and an over twofold decrease in hydraulic conductivity of root cortical cells (L pc). Contrary to L pr and L pc, 50 and 75 % defoliation treatments profoundly increased leaf lamina conductance (K lam) after 1 day and this increase was similar in magnitude for both defoliation treatments. Transpiration rates (E) rapidly declined after the removal of 75 % of leaves. However, E increased by over twofold in defoliated plants after 1 day and the increases in E and K lam were accompanied by five- and tenfold increases in the leaf expression of PIP2;4 in 50 and 75 % defoliation treatments, respectively. Defoliation treatments also stimulated net photosynthesis after 1 day and 3 weeks, although the increase was not as high as E. Leaf water potentials remained relatively stable following defoliation with the exception of a small decrease 1 day after defoliation which suggests that root water transport did not initially keep pace with the increased transpirational water loss. The results demonstrate the importance of root and leaf hydraulic properties in plant responses to defoliation and point to the involvement of PIP aquaporins in the early events following the loss of leaves.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24957702</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>240</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.</ArticleTitle>
<Pagination>
<MedlinePgn>553-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2106-2</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">Changes in root and leaf hydraulic properties and stimulation of transpiration rates that were initially triggered by defoliation were accompanied by corresponding changes in leaf and root aquaporin expression. Aspen (Populus tremuloides) seedlings were subjected to defoliation treatments by removing 50, 75 % or all of the leaves. Root hydraulic conductivity (Lpr) was sharply reduced in plants defoliated for 1 day and 1 week. The decrease in L pr could not be prevented by stem girdling and it was accompanied in one-day-defoliated plants by a large decrease in the root expression of PIP1,2 aquaporin and an over twofold decrease in hydraulic conductivity of root cortical cells (L pc). Contrary to L pr and L pc, 50 and 75 % defoliation treatments profoundly increased leaf lamina conductance (K lam) after 1 day and this increase was similar in magnitude for both defoliation treatments. Transpiration rates (E) rapidly declined after the removal of 75 % of leaves. However, E increased by over twofold in defoliated plants after 1 day and the increases in E and K lam were accompanied by five- and tenfold increases in the leaf expression of PIP2;4 in 50 and 75 % defoliation treatments, respectively. Defoliation treatments also stimulated net photosynthesis after 1 day and 3 weeks, although the increase was not as high as E. Leaf water potentials remained relatively stable following defoliation with the exception of a small decrease 1 day after defoliation which suggests that root water transport did not initially keep pace with the increased transpirational water loss. The results demonstrate the importance of root and leaf hydraulic properties in plant responses to defoliation and point to the involvement of PIP aquaporins in the early events following the loss of leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg, Edmonton, AB, T6G 2E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Equiza</LastName>
<ForeName>María A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Navarro-Rodenas</LastName>
<ForeName>Alfonso</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Seong H</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zwiazek</LastName>
<ForeName>Janusz J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24957702</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2106-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):354-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):962-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 May;14(5):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:361-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Dec;140(4):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Oct;34(10):1652-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Feb;55(2):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24406630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jun 27;12:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Dec;54(12):1963-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):828-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):939-946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Sep;90(3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Aug;32(8):958-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22874831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):839-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1031-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jan;134(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Nov;29(11):1467-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 15;579(20):4417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16061230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Oct;161(4):665-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19603186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Apr;52(357):739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Oct;27(10):1481-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17669738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(1):72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21401747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jul;61(12):3191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Apr;64(6):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Oct;222(2):258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 May;15(5):333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):479-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22665446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):2971-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Jul;21(10):691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11446998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17636130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(14):4063-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Nov;53(378):2177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Equiza, Maria A" sort="Equiza, Maria A" uniqKey="Equiza M" first="María A" last="Equiza">María A. Equiza</name>
<name sortKey="Lee, Seong H" sort="Lee, Seong H" uniqKey="Lee S" first="Seong H" last="Lee">Seong H. Lee</name>
<name sortKey="Navarro Rodenas, Alfonso" sort="Navarro Rodenas, Alfonso" uniqKey="Navarro Rodenas A" first="Alfonso" last="Navarro-Rodenas">Alfonso Navarro-Rodenas</name>
<name sortKey="Zwiazek, Janusz J" sort="Zwiazek, Janusz J" uniqKey="Zwiazek J" first="Janusz J" last="Zwiazek">Janusz J. Zwiazek</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Liu, Juan" sort="Liu, Juan" uniqKey="Liu J" first="Juan" last="Liu">Juan Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24957702
   |texte=   Hydraulic adjustments in aspen (Populus tremuloides) seedlings following defoliation involve root and leaf aquaporins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24957702" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020